AskDefine | Define resonate

Dictionary Definition



1 sound with resonance; "The sound resonates well in this theater" [syn: vibrate]
2 be received or understood [syn: come across]

User Contributed Dictionary




  1. To vibrate or sound, especially in response to another vibration.
    The books on top of the piano resonate when he plays certain notes.
  2. To have an effect or impact; to influence; to engender support.
    His words resonated with the crowd.


To vibrate or sound, especially in response to another vibration
To have an effect or impact; to influence; to engender support

See also

Extensive Definition

This article is about resonance in physics. For other senses of this term, see resonance (disambiguation).
In physics, resonance is the tendency of a system to oscillate at maximum amplitude at certain frequencies, known as the system's resonance frequencies (or resonant frequencies). At these frequencies, even small periodic driving forces can produce large amplitude vibrations, because the system stores vibrational energy. When damping is small, the resonance frequency is approximately equal to the natural frequency of the system, which is the frequency of free vibrations. Resonant phenomena occur with all type of vibrations or waves; mechanical (acoustic), electromagnetic, and quantum wave functions. Resonant systems can be used to generate vibrations of a specific frequency, or pick out specific frequencies from a complex vibration containing many frequencies.


One familiar example is a playground swing, which acts as a pendulum. Pushing a person in a swing in time with the natural interval of the swing (its resonance frequency) will make the swing go higher and higher (maximum amplitude), while attempts to push the swing at a faster or slower tempo will result in smaller arcs. This is because the energy the swing absorbs is maximized when the pushes are at the resonance frequency, while some of this energy is canceled out by the inertial energy of the swing when they are not.
Resonance occurs widely in nature, and is exploited in many man-made devices. Many sounds we hear, such as when hard objects of metal, glass, or wood are struck, are caused by brief resonant vibrations in the object. Light and other short wavelength electromagnetic radiation is produced by resonance on an atomic scale, such as electrons in atoms. Other examples are:


For a linear oscillator with a resonance frequency Ω, the intensity of oscillations I when the system is driven with a driving frequency ω is given by:
I(\omega) \propto \frac.
The intensity is defined as the square of the amplitude of the oscillations. This is a Lorentzian function, and this response is found in many physical situations involving resonant systems. Γ is a parameter dependent on the damping of the oscillator, and is known as the linewidth of the resonance. Heavily damped oscillators tend to have broad linewidths, and respond to a wider range of driving frequencies around the resonance frequency. The linewidth is inversely proportional to the Q factor, which is a measure of the sharpness of the resonance.


A physical system can have as many resonance frequencies as it has degrees of freedom; each degree of freedom can vibrate as a harmonic oscillator. Systems with one degree of freedom, such as a mass on a spring, pendulums, balance wheels, and LC tuned circuits have one resonance frequency. Systems with two degrees of freedom, such as coupled pendulums and resonant transformers can have two resonance frequencies. As the number of coupled harmonic oscillators grows, the time it takes to transfer energy from one to the next becomes significant. The vibrations in them begin to travel through the coupled harmonic oscillators in waves, from one oscillator to the next.
Extended objects that experience resonance due to vibrations inside them are called resonators, such as organ pipes, vibrating strings, quartz crystals, microwave cavities, and laser rods. Since these can be viewed as being made of millions of coupled moving parts (such as atoms), they can have millions of resonance frequencies. The vibrations inside them travel as waves, at an approximately constant velocity, bouncing back and forth between the sides of the resonator. If the distance between the sides is d\,, the length of a round trip is 2d\,. In order to cause resonance, the phase of a sinusoidal wave after a round trip has to be equal to the initial phase, so the waves will reinforce. So the condition for resonance in a resonator is that the round trip distance, 2d\,, be equal to an integral number of wavelengths of the wave:
2d = N\lambda,\qquad\qquad N \in \
If the velocity of a wave is v\,, the frequency is f = v / \lambda\, so the resonant frequencies are:
f = \frac\qquad\qquad N \in \
So the resonance frequencies of resonators, called normal modes, are equally spaced multiples of a lowest frequency called the fundamental frequency. The multiples are often called overtones. There may be several such series of resonant frequencies, corresponding to different modes of vibration.

Old Tacoma Narrows bridge failure

The collapse of the Old Tacoma Narrows Bridge, nicknamed Galloping Gertie, in 1940 is sometimes characterized in physics textbooks as a classical example of resonance. This description is misleading, however. The catastrophic vibrations that destroyed the bridge were not due to simple mechanical resonance, but to a more complicated oscillation between the bridge and winds passing through it, known as aeroelastic flutter. Robert H. Scanlan, father of the field of bridge aerodynamics, wrote an article about this misunderstanding.

Resonances in quantum mechanics

In quantum mechanics and quantum field theory resonances may appear in similar circumstances to classical physics. However, they can also be thought of as unstable particles, with the formula above still valid if the \Gamma is the decay rate and \Omega replaced by the particle's mass M. In that case, the formula just comes from the particle's propagator, with its mass replaced by the complex number M+i\Gamma. The formula is further related to the particle's decay rate by the optical theorem.

String resonance in music instruments

String resonance occurs on string instruments. Strings or parts of strings may resonate at their fundamental or overtone frequencies when other strings are sounded. For example, an A string at 440 Hz will cause an E string at 330 Hz to resonate, because they share an overtone of 1320 Hz (the third overtone of A and fourth overtone of E).


External links

resonate in Bosnian: Rezonanca
resonate in Bulgarian: Резонанс
resonate in Czech: Rezonance
resonate in Danish: Resonans (fysik)
resonate in German: Resonanz (Physik)
resonate in Estonian: Resonants
resonate in Spanish: Resonancia (mecánica)
resonate in French: Résonance
resonate in Korean: 공명
resonate in Croatian: Rezonancija
resonate in Italian: Risonanza (fisica)
resonate in Hebrew: תהודה
resonate in Lithuanian: Rezonansas
resonate in Hungarian: Rezonancia
resonate in Malay (macrolanguage): Resonan
resonate in Dutch: Resonantie
resonate in Japanese: 共鳴
resonate in Norwegian: Resonans
resonate in Polish: Rezonans
resonate in Portuguese: Ressonância
resonate in Russian: Резонанс
resonate in Slovenian: Resonanca
resonate in Finnish: Resonanssi
resonate in Swedish: Resonans
resonate in Thai: การสั่นพ้อง
resonate in Vietnamese: Cộng hưởng
resonate in Ukrainian: Резонанс
resonate in Chinese: 共振

Synonyms, Antonyms and Related Words

Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1